Study of changes in physicochemical properties of melon crops under infrared drying conditions
https://doi.org/10.48184/2304-568X-2025-4-58-67
Abstract
This paper presents the results of a study examining the effect of infrared drying on the preservation of biologically active substances and minerals in melons—watermelon of the 'Asar' variety, melon of the 'Kolkhoznitsa' variety, and pumpkin of the 'Aphrodite' variety—grown in southern Kazakhstan. Key chemical composition parameters were determined before and after drying, including dry matter content, total sugars, vitamin C, lycopene, β-carotene, and phenolic compounds, calculated on a dry matter basis. The preservation rate of phenolic compounds was found to be 88–93%, β-carotene—86–87%, and vitamin C—75–80%, demonstrating the gentle nature of infrared drying and the high preservation of antioxidant components. The mineral composition of the dried plant materials was also studied. It was shown that watermelon, melon, and pumpkin retain significant amounts of macro- and microelements (K, Ca, Mg, Fe, Zn), while the mineral concentration on a dry matter basis increases 6-10 times compared to fresh samples due to moisture removal. The study results demonstrate that infrared drying is an effective method for producing concentrated and stable powders from melons, preserving their biologically valuable and mineral components. The data obtained can be used in the development of technologies for functional foods and natural ingredients based on local plant materials from Kazakhstan.
About the Authors
S. U. YerkebayevaKazakhstan
160000, Shymkent, Tauke Khan Ave.,5
A. M. Taspolatova
Kazakhstan
160000, Shymkent, Tauke Khan Ave.,5
References
1. Fiziko-khimicheskiye metody konservirovaniya produktov [physicochemical methods of food preservation] // proceedings of the viii international student scientific conference "student scientific forum"url: a href="https://scienceforum.ru/2016-/article/2016020194" https://scienceforum.ru/2016/article/2016020194</a> (date of access: 21.10.2025). (in Russian)
2. Calín-Sánchez, Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, A., & Figiel, A. (2020, september 26). Traditional and novel drying techniques. Https://doi.org/10.3390/foods9091261 https://encyclopedia.pub/entry/2195
3. Ergashev B.A., Shadiyev Z.I. Rol' sushil'nogo oborudovaniya v proizvodstve sushki sel'skokhozyaystvennykh i pishchevykh produktov [the role of drying equipment in the production of drying agricultural and food products] // // universum: technical sciences: electronic. Scientific journal. 2023. 11(116). Url: https://7universum.com/ru/tech/archive/item/16249 (date of access: 21.10.2025). (in Russian)
4. Aboud, Salam & Altemimi, Ammar & Al-Hilphy, Asaad & Lee, Yi-Chen & Cacciola, Francesco. (2019). A Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules. 24. 2-21. DOI:10.3390/molecules24224125
5. Huang, Dan & Pei, Yang & Tang, Xiaohong & Luo, Lei & Sunden, Bengt. (2021). Application of infrared radiation in the drying of food products. Trends In Food Science & Technology. 110. DOI:10.1016/j.tifs.2021.02.039
6. Chang, Antai & Zheng, Xia & Xiao, Hong-Wei & Yao, Xuedong & Liu, Decheng & Li, Xiangyu & Li, Yican. (2022). Short- and Medium-Wave Infrared Drying of Cantaloupe (Cucumis Melon L.) Slices: Drying Kinetics and Process Parameter Optimization. Processes. 10. 114. DOI:10.3390/pr10010114
7. Obajemihi OI, Cheng JH, Sun DW. Novel sequential and simultaneous infrared-accelerated drying technologies for the food industry: principles, applications and challenges. Crit Rev Food Sci Nutr. 2023;63(11):1465-1482. DOI: 10.1080/10408398.2022.2126963 .
8. Polat, Ahmet & Taşkin, Onur & Izli, Nazmi. (2022). Intermittent and continuous infrared drying of sweet potatoes. Heat and Mass Transfer. 58. 1-13. DOI:10.1007/s00231-022-03212-3
9. Jovanovic, Jelena & Adnadjevic, Borivoj. (2023). Introductory Chapter: A Comprehensive Review of the Versatile Dehydration Processes. DOI:10.5772/intechopen.111481
10. Zhang, Min & Chen, Huizhi & Mujumdar, Arun & Tang, Juming & Miao, Song & Wang, Yuchuan. (2017). Recent Developments in High-Quality Drying of Vegetables, Fruits and Aquatic Products. Critical reviews in food science and nutrition. 57. DOI:10.1080/10408398.2014.979280
11. Zimmermann Mb, Köhrle J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid. 2002 oct;12(10):867-78. DOI: 10.1089/105072502761016494
12. Sensornyy analiz: metodicheskiye ukazaniya po vypolneniyu laboratornykh rabot / [sensory analysis: guidelines for performing laboratory work] / south-west state university; compiled by: M.B. Pikalova. Kursk, 2017. 45 p. Bibliography: p. 43. https://swsu.ru/sveden/files/metod_b1.v.dv.05.01_19.04.02_25.02.2020_lab.pdf (in Russian)
13. Aitbaev T.E., Babaev S.A., Tokbergenova Zh.A., Mamyrbekov Zh.Zh., Nusupova A.O., Alpysbaeva V.O., Ibragimova G.M., Taishibaeva E.U., Manabaeva U.A. Tekhnologiya vyrashchivaniya kartofelya iovoshchebahchevyh kul'tur (rekomendacii po vesenne-polevym rabotam) [technology for growing potatoes andvegetables (recommendations for spring field work)]. Almaty, 2024 https://nasec.kz/sites/default/files/2024-04/10.%20рекомендации_казниипо%202024.pdf?utm_source=chatgpt.com (in Russian)
14. Arslan, D., &Özcan, M. M. (2011). Dehydration of red bell-pepper (capsicum annuum l.): change in drying behavior, colour and antioxidant content. Food and bioproducts processing, 89(4), 504–513. DOI.org/10.1016/j.fbp.2010.09.009
15. Kara, C., Doymaz, I. Effective moisture diffusivity determination and mathematical modelling of drying curves of apple pomace. Heat mass transfer 51, 983–989 (2015). Https://doi.org/10.1007/s00231-014-1470-6
Review
For citations:
Yerkebayeva S.U., Taspolatova A.M. Study of changes in physicochemical properties of melon crops under infrared drying conditions. The Journal of Almaty Technological University. 2025;150(4):58-67. (In Russ.) https://doi.org/10.48184/2304-568X-2025-4-58-67


















