REFERENCES

- 1. TR TS 021/2011 Tekhnicheskij reglament Tamozhennogo soyuza «O bezopasnosti pishchevoj produkcii» (s izmeneniyami na 8 avgusta 2019 goda) Rezhim dostupa: http://docs.cntd.ru/ document/902320560. Data obrashcheniya. 13.01.2020 (in Russian)
- 2. Frolov G.A., Galstyan A.G., Petrov A.N. Sistemy vodopodgotovki v proizvodstve vosstanovlennykh molochnykh produktov//Pishchevaya promyshlennost'. 2008, -№3. S. 42-43. (in Russian)
- 3. Babina T.A. Trebovaniya k kachestvu vody v molochnoj promyshlennosti // Molochnaya promyshlennost'. 2017. –S. 60-63. (in Russian)
- 4. Tekhnicheskij reglament Evrazijskogo ehkonomicheskogo soyuza «O bezopasnosti upakovannoj pit'evoj vody, vklyuchaya prirodnuyu mineral'nuyu vodu». Moskva. Izdatel'stvo standartov IPK. 2017. 45s. (in Russian)
- 5. Polyanskij K.K, Ponomarev A.N. Membrannye metody vodopodgotovki v proizvodstve vosstanovlennykh molochnykh produktov // Pererabotka moloka. -2017. -№4. –S. 54-58. (in Russian)
- 6. Park S.L, Lee S.Y., Kim H.J., Lim S.I., Nam Y.D, Kang I.M. Applocation of clay Minerals in the Food Industry// Economic and environmental geology. -2015. V.48. I.3 p.258. (in Russian)

УДК 66-93 МРНТИ 65.29.29 https://doi.org/10.48184/2304-568X-2020-4-12-21

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ИНФРАКРАСНЫХ ГОРЕЛОК МИКРОНИЗАТОРА, РАБОТАЮЩЕГО НА БИОМЕТАНЕ

B.B. $A\Phi AHAC LEB^1$, A.H. $OCTPUKOB^2$, M.B. $KOПЫЛОВ^2$

(1 ОАО "Всероссийский научно-исследовательский институт комбикормовой промышленности (ОАО "ВНИИ комбикормовой промышленности), пр. Труда, 91, Воронеж, 394026, Россия ² ФГБОУ ВО "Ворнежский государственный университет инженерных технологий" (ФГБОУ ВО «ВГУЭТ»), пр. Революции, 19, Воронеж, 394036, Россия)

E-mail: ostrikov27@yandex.ru

Для увеличения срока хранения зерновых культур используется термообработка с помощью микронизатора. Для проведения испытаний была разработана и усовершенствована блочная нагревательная горелка с излучающими насадками для определения допустимого содержания углекислого газа в очищенном биогазе при подаче его на систему газового инфракрасного нагрева с горелками. Установлена работоспособность горелки инфракрасного излучения ГИК-8 на очищенном биогазе с содержанием СО2 0.2-34.0%. Температура греющей поверхности горелки ГИК-8 на газовых смесях с содержанием СО2 18-34% составляет 900-950°С, что не отличается от номинальной температуры при работе на природном газе. Определена возможность розжига холодной горелки ГИК-8 при 33% содержании СО2 в очищенном биогазе.

Ключевые слова: зерновые культуры, микронизатор, нагревательная горелка, биогаз, инфракрасный нагрев.

БИОМЕТАНДА ЖҰМЫС АТҚАРАТЫН МИКРОНИЗАТОРДЫҢ ИНФРАҚЫЗЫЛ ЖАНАРҒЫЛАРЫН ЭКСПЕРИМЕНТТІК ЗЕРТТЕУ

B.B. $A\Phi AHAC \ EB^{1}$, A.H. $OCTPUKOB^{2}$, M.B. $KOПЫЛОВ^{2}$

(¹ "Бүкілресейлік құрама жем өнеркәсібі ғылыми-зерттеу институты" ААҚ ("АРИФ" ААҚ), Еңбек даңғ., 91, Воронеж, 394026, Ресей

² "Воронеж мемлекеттік инженерлік технологиялар университеті" ЖБ ФМББМ («ВМИТУ» ЖБ ФМББМ), Революция даңғ., 19, Воронеж, 394036, Ресей)

E-mail: ostrikov27@yandex.ru

Дәнді дақылдардың сақтау мерзімін арттыру үшін микронизатор көмегімен термиялық өңдеу қолданылады. Сынақтар жүргізу үшін жанарғылары бар газды инфрақызыл қызды-

ру жүйесіне берген кезде тазартылған биогаздағы көмірқышқыл газының рұқсат етілген мөлшерін анықтау үшін сәуле шашқыштары бар, жиынтықталған қыздыру жанарғысы әзірленіп, жетілдірілді. Құрамында СО2-нің 0.2-34.0% болатын тазартылған биогазда ГИК-8 инфрақызыл сәулелі жанарғысының жұмыс қабілеттілігі анықталды. Құрамында СО2-нің 18-34% болатын газ қоспаларындағы ГИК-8 жанарғысы қыздыру бетінің температурасы 900-9500°С құрайды, бұл табиғи газбен жұмыс атқару кезіндегі номиналды температурадан ерекшеленбейді. Тазартылған биогазда СО2 мөлшерінің 33%-ы кезінде ГИК-8 суық жанарғысын жағу мүмкіндігі анықталды.

Негізгі сөздер: дәнді дақылдар, микронизатор, қыздыру жанарғысы, биогаз, инфрақызыл қыздыру.

EXPERIMENTAL STUDIES OF INFRARED BURNERS OF A MICRONIZER FUNCTIONING WITH BIOMETHANE

V.V. AFANASIEV¹, A. N. OSTRIKOV², M. V. KOPYLOV²

(¹ JSC "All-Russian Research Institute of the Feed Industry" (JSC «ARRIFI»), Labor Av., 91, Voronezh, 394026, Russia

² FSBEI HE "Voronezh State University of Engineering Technologies" (FSBEI HE «VSUET»), Revolution Av., 19, Voronezh, 394036, Russia)

E-mail: ostrikov27@yandex.ru

To increase the shelf life of grain crops, heat treatment with a micronizer is used. For testing, a block heating burner with radiant nozzles was developed and improved to determine the permissible content of carbon dioxide in the purified biogas when fed to a gas infrared heating system with burners. The operability of the infrared burner ΓИК-8 on purified biogas with a CO₂ content of 0.2-34.0% has been established. The temperature of the heating surface of the ΓИК-8 burner on gas mixtures with a CO₂ content of 18-34% is 900-950°C, which does not differ from the nominal temperature when operating on natural gas. The possibility of ignition of a cold burner ΓИК-8 at 33% CO₂ content in the purified biogas has been determined.

Key words: cereals, micronizer, heating burner, biogas, infrared heating.

Введение

Для увеличения сроков хранения и дальнейшей переработки растительного сырья огромное влияние оказывает правильный выбор способа его термической обработки.

Термообработка зерна, осуществляемая на установках высокотемпературной микронизации, в настоящее время находит все большее применение при переработке зерна и области его применения значительно расширяются. На сегодняшний день процесс микронизации достаточно широко применяется многими предприятиями, которые выпускают как комбикорма, так и крупы, каши быстрого приготовления.

В связи с этим для увеличения эффективности оборудования проводится модернизация основных узлов конструкции, в частности, блоков инфракрасных горелок, которые являются основными элементами микронизаторов.

Конструктивные изменения в зоне обработки сырья и регулирования режимами не приводят к каким-либо принципиальным изменениям в конструкции микронизатора в целом и, как правило, направлены на улучшение следующих показателей: себестоимость готового продукта и потребительские свойства.

Материалы и методы

Методика разработана для блочной нагревательной горелки ГИК-8 с учетом общих требований, определяемых стандартами и техническими условиями.

При испытании газовых горелок с излучающими насадками определяли следующие характеристики: среднюю температуру излучающей поверхности; равномерность распределения температуры по излучающей поверхности; температуру ограждающих поверхностей и элементов ручного управления; характер воспламенения и погасания; время начального зажигания; время повторного зажи-

гания; время переходного периода с режима "Большое пламя" на режим "Малое пламя"; время закрытия автоматического запорного клапана; устойчивость к воздействию ветра.

При испытании горелок и средств их автоматики в диапазоне рабочих давлений газа проверяется: возможность дистанционного зажигания при одновременном открытии автоматического запорного устройства; контроль горения, а в случае погасания восстановление горения; закрытие автоматического запорного устройства при невозможности восстановления горения; проскок пламени в смеситель; отключение электроэнергии; отключение подачи газа.

В диапазоне рабочего регулирования проверяется зависимость коэффициента расхода воздуха от давления газа перед горелкой. Коэффициент расхода воздуха определяется либо по составу газов в пробе воздушной смеси, либо по составу неразбавленных продуктов горения, отбираемых непосредственно перед излучающей поверхностью [1].

По анализу продуктов горения перед излучающей пластиной определяют концентрацию окиси углерода, окислов азота и потери тепла от химической неполноты горения. Расходные характеристики горелки и коэффициенты гидравлического сопротивления определяются при продувке газового тракта.

При определении условных расходных характеристик продувкой воздухом газ заменяется воздухом в соотношении: 1 м³ газа равен 1 м³ воздуха. Соотношение между расходом воздуха и расходом воздуха, имитирующего газ, принято равным стехиометрическому для данного вида газа.

Коэффициенты гидравлического сопротивления соответственно газового ξ_r и воздушного ξ_B трактов определяют по формулам:

$$\xi_{z} = \frac{2P_{\text{B.r}}10^{3}}{\rho_{\text{e.z}}W_{\text{e.z}}^{2}},\tag{1}$$

$$\xi_{e} = \frac{2P_{\rm B}10^{3}}{\rho_{e}W_{e}^{2}},\tag{2}$$

где $P_{6.2}$ — избыточное давление воздуха, имитирующего газ, на входе в горелку, кПа; P_6 — избыточное давление воздуха перед горелкой, кПа; $W_{6.2}$ и W_6 — среднерасходная скорость в характерных сечениях газового и воздушного трактов, м/с.

Для инжекционных и двухпроводных горелок $P_{\text{в.r}} < 90 \text{ кПa}$:

$$\rho_{\text{\tiny 6.2}} = 1,29 \left(\frac{273}{T_{\text{\tiny 6}}} \right) \left[\frac{\left(P_{\text{\tiny 6.2}} + B_{\text{\tiny 0}} \right)}{101,3} \right] \left[\frac{B_{\text{\tiny 0}}}{\left(P_{\text{\tiny 6.2}} + B_{\text{\tiny 0}} \right)} \right]^{\frac{1}{k}}, (3)$$

где k — показатель адиабаты для воздуха.

На основе результатов холодных испытаний строят зависимости расхода газа и воздуха от их давлений перед горелкой и зависимости коэффициентов гидравлических сопротивлений по газовому и воздушному пути от чисел Рейнольдса для газового и воздушного потоков в характерных сечениях.

Условия проведения испытаний горелки, влияющие на ее режим работы, должны быть максимально приближены к эксплуатационным.

Горелку испытывают на всех видах газообразных смесей, для которых она предназначена. Колебания величины числа Воббе не должны превышать ± 5 % от средней в процессе испытаний горелки.

Экспериментальные исследования и стендовые испытания должны обеспечивать опытную проверку основных параметров работы горелки ГИК-8 при использовании в качестве топлива вариантов газа с различным объемным соотношением метана и двуокиси углерода.

Технические характеристики горелки ГИК-8 на природном газе представлены в таблице 1.

Таблица 1. Технические характеристики горелки ГИК-8 на природном газе

Наименование параметра	Единицы измерения	Значение		
Вид топлива	-	Природный газ, ГОСТ 5542		
Номинальная тепловая мощность ИК-нагревателя	кВт	т 7.5		
Расход газа при номинальной тепловой мощности	м ³ /час	0.8		
Давление газа на входе в смеситель, не менее	кПа 3.5			
Лучистый коэффициент полезного действия при номинальной тепловой мощности, не менее	%	35		
Содержание окислов азота (NO _x) в сухих неразбавлен-	$M\Gamma/M^3$	40		

ных продуктах сгорания при (α = 1.0) при номинальной тепловой мощности, не более	%	0.002
Содержание окиси углерода в сухих неразбавленных продуктах сгорания при ($\alpha=1.0$) при номинальной тепловой мощности, не более	мг/м ³ %	250 0.02
Температура:		
- излучающей поверхности	$^{\circ}\mathrm{C}$	800-960
- продуктов сгорания	$^{\circ}\mathrm{C}$	менее 1000
- корпуса горелки	$^{\circ}\mathrm{C}$	не более 300
- окружающего воздуха	°C	~15-20
Время срабатывания автоматики розжига	c	4
Расстояние от керамики горелки до лотка с зерном	MM	120-250

^{*}Содержание метана в природном газе -85- 95 %.

Для определения возможности использования в качестве топлива горелки ГИК-8 биогаза необходимо провести серию опытов, используя варианты смесей газов с различным соотношением метана и двуокиси углерода.

Вариантные составы смеси газов для проведения экспериментов будут определены при проведении экспериментов с учетом ограничений приборов и оборудования.

При проведении каждого опыта контролируются и определяются: устойчивый розжиг

горелки и контроль горения в стационарном режиме при использовании специальной автоматики с электродами розжига и контроля пламени; определение температуры корпуса горелки при горизонтальном положении; соответствие параметров продуктов сгорания заявленным показателям. Эксперименты и исследования горелки ГИК-8 должны быть проведены в соответствии со схемой, указанной на рисунке 1, спецификация оборудования указана в таблице 2.

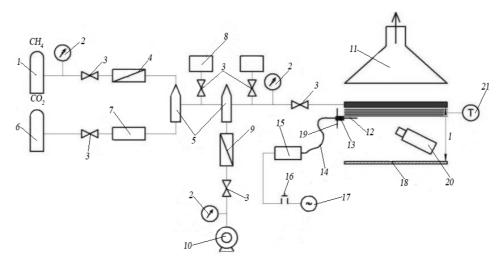


Рисунок 1. Схема проведения испытаний горелки ГИК-8 на модельном биогазе.

Таблица 2. Спецификация основного оборудования для исследований горелки ГИК-8

Наименование оборудования	Марка	Количество
Баллон для СН ₄ на 100 л	CNG Light	1
Манометр	KM	3
Кран шаровой	Optibal	6
Ротаметр (15 л/мин)	РМФ-II	1
Смеситель	-	2
Баллон для СО2 на 40 л	-	2
Регулятор расхода газа универсальный с подогревом	УЗО-АР40П-36	1
Газовый анализатор	MFA9000	2
Ротаметр (200 л/мин)	PMΦ - IV	1

Напорный вентилятор	ВЦУ 4Е	1
Вытяжка	-	1
Электрод запальный	FZEL=300 _{MM}	1
Держатель электрода	FZE	1
Кабель высоковольтный 1м	ПВ3КО-15-300	1
Трансформатор высоковольтный IP65	TGI 5-15/100W	1
Кнопка управления розжигом	-	1
Источник напряжения U~220 B,	-	1
Плита 600х200х5мм	Ст 20	1
Экран 600х200х5мм	Ст 20	1
Тепловизор	Seek Thermal Reveal PRO	1
Термопара	Хромель-копель	1

Целью проводимых экспериментов является определение допустимого содержания углекислого газа в очищенном биогазе при подаче его на систему газового инфракрасного нагрева с горелками ГИК-8.

Исходный биогаз имеет следующие параметры:

- CH₄50-60 %;
- $-CO_235-45\%$;
- H₂S50-150 ppm;
- $-O_21\%$;
- $-N \sim 1\%$;
- $\text{ H} \sim 1 \%$.

Задачи экспериментального исследования: проведение испытаний горелки ГИК-8 на смеси газов с различным объемным соотношением метана и двуокиси углерода, характерных для биогаза; определение технических характеристик горелки для различных вариантов объемных соотношений метана и двуокиси углерода.

ИК Горелка ГИК-8, представленная для проведения испытаний, изготовлена ООО «КЗГО», в г. Каменск - Шахтинске прошла сертификационные испытания.

Основой системы инфракрасного нагрева являются 40 горелок инфракрасного излучения ГИК-8 специального назначения, предназначенных для инфракрасного нагрева при сжигании горючих газов с высокой теплотой сгорания. При этом горелки должны обеспечивать равномерный режим сгорания газовой смеси, исключающий перегрев локальных зон керамического насадка.

Стенд для проведения испытаний горелки ГИК-8 должен представлять собой устройство, которое обеспечивает:

- монтаж горелки;
- размещение горелки на доступной высоте, позволяющей обслуживать элементы горелки, при том, что нагревающая поверх-

ность располагается горизонтально и направлена вниз;

- смешение и подачу в требуемых количествах и воздуха и газов, задействованных в вариантах испытаний;
- отвод продуктов сгорания под вытяжной зонт:
- измерение всех параметров работы горелки по каждому из вариантов испытаний, в т. ч.: расходов воздуха и биогаза, температуры излучающей поверхности, продуктов сгорания, элементов корпуса горелки, давления биогаза и воздуха, времени срабатывания автоматики розжига и контроля пламени факела, состава продуктов сгорания и газовоздушной смеси, шумовые характеристики.

Порядок проведения экспериментов:

- 1. Эксперименты проводятся по каждому из вариантов состава модельного газа.
- 2. Первая серия опытов (по каждому варианту состава модельного газа) проводится без розжига горелки. Задача серий определить положение регулирующих органов, давление газов и воздуха перед смесителем, время, необходимое для получения газовоздушной смеси с $\sigma = 1.0$ -1.1. Регулирование проводится путем изменения настройки регуляторов давления.
- 3. Второй этап испытаний проводится с розжигом горелки. Розжиг осуществляется от запального электрода. После стабилизации горения производится замер всех требуемых параметров.
- 4. При невозможности выхода горелки на стабильный режим горения по конкретному из вариантов подачи модельного газа наступления стабильного горения также проводятся замеры всех возможных параметров.

Измерительные приборы и регуляторы стенда для испытаний инфракрасной горелки на вариантах модельного газа должны обес-

печивать подачу и измерение объемов газов и воздуха, измерение состава продуктов сгорания и газовоздушной смеси, измерение тем-

пературы продуктов сгорания, корпуса и излучающей поверхности горелки в пределах, указанных в таблице 3.

Таблица 3. Предельные значения параметров стенда

Наименование параметра	Единицы измерения	Значение
Расход и состав модельного газа	1	-
Расход воздуха	л/ч	-
Давление газов перед смесителем	кПа	3.5
Давление воздуха перед смесителем	кПа	3.5
Атмосферное давление	кПа	100,0
Коэффициент избытка воздуха	1	1.02-1.08
Температура:		
- излучающей поверхности	$^{\circ}\mathrm{C}$	900-1100
- продуктов сгорания	$^{\circ}\mathrm{C}$	менее 1000
- корпуса горелки	$^{\circ}\mathrm{C}$	не более 300
- окружающего воздуха	°C	~15-20
Время срабатывания автоматики розжига и контроля факела	c	0.5-20

Результаты экспериментальных исследований горелки ГИК-8

В соответствии с методикой проведе-

ния исследований и схемой экспериментов смонтирован стенд для испытаний горелки ГИК-8 (рис. 2).

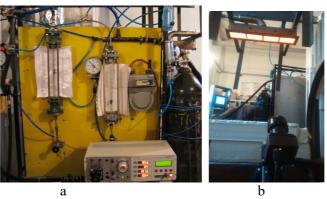


Рисунок 2. Испытательный стенд в процессе работы: а – подготовка и анализ газовой смеси; b – тепловизионная съемка работы горелки в стационарном режиме.

На рисунке 2, b показана работа горелки ГИК-8 в разогретом состоянии, а на графике рисунка 3 температурный режим работы горелки.

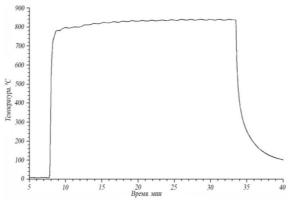


Рисунок 3. Изменение температуры керамики в процессе работы горелки на метановоздушной смеси в режиме с номинальными параметрами.

На рисунке 3 показано изменение температуры T рабочей поверхности керамики при работе на метановоздушной смеси в номинальном режиме 1 (табл. 5). Основной рост температуры происходил в течение первых двух минут работы горелки.

Небольшие периодические колебания температуры (±3 °С в стационарном режиме) обусловлены характерными колебаниями расхода воздуха (±1,7 л/мин, или 1,5% от заданного значения) в результате работы компрессора. Процесс выхода горелки в установившемся (номинальном) режиме начинается с момента розжига. В экспериментах опреде-

лено, что при увеличении в составе биогазовой смеси содержания CO_2 от 0,2 до 34 % процесс розжига визуально не изменяется.

На рисунке 4 приведена температура при работе на модельной смеси, содержащей углекислый газ. Горелка была зажжена и разогрета в режиме 1, после чего в газовую смесь подмешивался СО₂ с расходом, соответствующим 18, 28 и 34 % СО₂ в модельной смеси (режимы 2, 3 и 4 соответственно). При этом расход природного газа и расход воздуха поддерживался постоянным. Каких-либо принципиальных различий в работе горелки на этих режимах не наблюдалось.

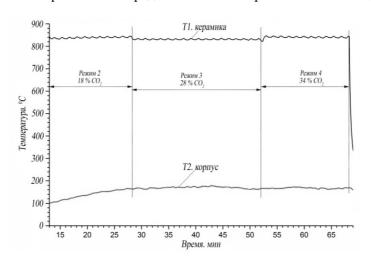


Рисунок 4. Изменение температуры керамики (T_1) и верхней стенки корпуса (T_2) в процессе работы горелки: a — работа горелки на метано-воздушной смеси в режиме с номинальными параметрами; δ — работа прогретой горелки при варьировании состава модельной смеси метана и CO_2 . Измерения проводились с помощью гибких термопар К-типа.

Таблица 4. Параметры работы горелки в различных режимах

Состав модельной смеси, об.%		Расход, л/мин				Коэффиц	Давление, мбар		
Режим работы	CH ₄	CO_2	Возду х	Газ	CO ₂	Общий расход	иент избытка воздуха	Модельной смеси перед смесителем	Общей смеси перед горелкой
1	100	0	133.7	13.4	0.0	147.1	1.05	21.0	6.0
2	82	18	135.4	13.1	2.9	151.4	1.09	24.0	6.5
3	72	28	134.6	12.8	5.1	152.5	1.10	24.5	7.0
4	66	34	135.4	13.1	6.9	155.4	1.09	25.5	7.0
Розжиг с СО ₂	67	33	135.4	13.4	6.5	155.3	1.06	25	7

Концентрация в общей смеси, об.%			Время	Температура, °С				
Режим работы	CH ₄	CO_2	O_2	работы на режиме, мин	T_1 керамики	T ₂ кор- пуса	<i>T</i> ₃ харак- терной области	T₄ на стыке секций керамики
1	9.5	0.0	19.1	17	843	132	891	634
2	9.3	1.7	18.6	14	842	165	870	601
3	9.0	3.0	18.6	23	831	165	830	631
4	9.3	4.1	18.4	15	841	169	846	626
Розжиг с СО ₂	-	-	-	-	-	ı	-	-

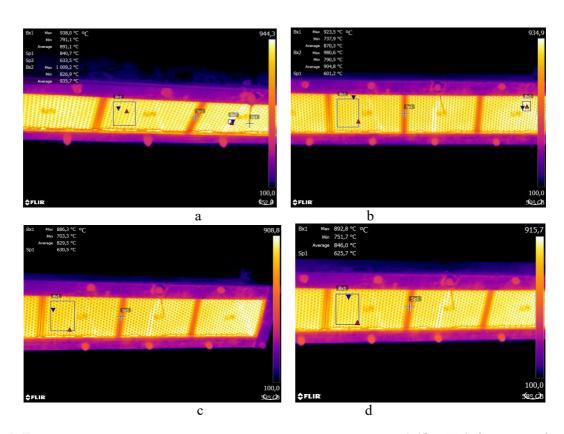


Рисунок 5. Температурное поле, снятое с помощью тепловизора: a – режим 1 (без CO_2); b – режим 2; c – режим 3; d – режим 4. Расположение горелки на снимках соответствует рис. 2, b и зеркально отражено по вертикали по сравнению c остальными рисунками.

При этом анализ с помощью тепловизионной съемки показал (рис. 5) тенденцию к изменению средней температуры (T_3) выбранного характерного участка керамической поверхности при переходе на очередной режим. Температура на стыке керамических пластин (T_4) , характеризующая не столько состояние рабочей поверхности, сколько прогрев керамического материала, практически не менялась при переходе на новый режим. Помимо изменения состава рабочей газовой смеси возможная причина изменения температуры T_3 может состоять в небольшом

различии расхода природного газа в разных режимах и, как следствие, различии текущей мощности горелки. Для уточнения этого вопроса требуются дополнительные измерения со стабилизированным поддержанием расходов компонентов рабочей смеси. Параметры работы горелки в указанных режимах приведены в таблице 4.

Заключение

Экспериментально установлена работоспособность горелки инфракрасного излучения ГИК-8 на очищенном биогазе с содержанием CO_2 0.2-34.0% и разработана усовер-

шенствованная конструкция горелки для микронизатора с адаптацией ее эксплуатации на биогазе.

Установлено, что температура греющей поверхности горелки ГИК-8 на газовых смесях с содержанием CO_2 18-34% составляет 900-950°C, что не отличается от номинальной температуры при работе на природном газе.

Определена возможность розжига холодной горелки ГИК-8 при 33% содержании CO_2 в очищенном биогазе.

СПИСОК ЛИТЕРАТУРЫ

- 1. Винтовкин А.А., Ладыгичев М.Г. и др. Современые горелочные устройства (конструкции и технические характеристики). Справочник. М.: Машиностроение-1. 2001 496 с. с ил.
- 2. Salaimeh, A.A., Hirasawa, T., Fuchihata, M., Akafuah, N., Saito, K. Thermal and flow structures of a porous burner flame and an array of micro flame burners: Implications to simulate large scale mass fires and fire whirls in laboratory // 10th U.S. National Combustion Meeting. 2017. № 128602.
- 3. Vasilik N.Y., Arutyunov V.S., Zakharov A.A., Shmelev V.M. Use of matrices made of permeable wire material in infrared burners // Russian Journal of Physical Chemistry B, 2017. V. 11 (6). P. 937-941.
- 4. Vasilik N.Y., Shmelev V.M., Porsin A.V. Environmental characteristics of infrared burners with a catalytic radiation screen // Russian Journal of Physical Chemistry B, 2019. T. 13. V.1. P. 101-106.
- 5. Shmelev V.M. Combustion of natural gas at the surface of a high-porosity metal matrix // Russian Journal of Physical Chemistry B, 2010. T. 4. V. 4. P. 593-601.
- 6. Pat. No. 2559001 Russian Federation, IPC C2 A23N 17/00. Micronizer [Text] / Afanasyev V.A., Meshcheryakov E.B., Kochanov D.S. applicant and patent holder Open Joint-Stock Company All-Russian Scientific Research Institute of the Feed Industry No. 2013120404/13; declared 04/30/2013; publ. 08/10/2015, Bull. Number 22.
- 7. Masalimov I.Kh., Karimov H.T., Pavlenko V.A. Mathematical model of drying barley grain in infrared heating in vacuum // Innovation in Agriculture, 2019. V. 3(32). P. 95-101.
- 8. Afanasiev V.A., Ostrikov A.N., Manuilov V.V., Aleksandrov A.I. Development of highly efficient technology of grain moisture-heat treatment and the design of conditioner steamer. Proceedings of the Voronezh State University of Engineering Technologies. 2019;81(1):19-26. (In Russian)
- 9. Rudobashta S., Zueva G. Drying of seeds through oscillating infrared heating // Drying Technology, 2016. T. 34. V. 5. P. 505-515.
- 10. Riadh M.H., Ahmad S.A.B., Marhaban M.H., Soh A.C. Infrared heating in food drying: an

- overview // Drying Technology, 2015. T. 33. V. 3. -P. 322-335.
- 11. Martynov V.M., Gabitov I.I., Karimov KH.T., Masalimov I.KH., Permyakov V.N., Ganeev I.R., Saitov I., Saitov B. Reasoning barley grain drying modes for vacuum-infrared drying machines // Journal of Engineering and Applied Sciences. 2018, -T. 13. V. S11. P. 8803-8811.
- 12. Lakhno V., Kasatkin D., Buriachok V., Palekha Y., Saiko V., Domrachev V. It support in decision-making with regard to infra-red grain drying management // Journal of Theoretical and Applied Information Technology, 2018. T. 96. V 22. P. 7587-7598.
- 13. Ospanov A.B., Karmanov D.K., Dautkanova D.R., Vasiliev A.N., Budnikov D.A. Changing parameters of the microwave field in the grain layer // Journal of Engineering and Applied Sciences, 2016. T. 11. V. 13. P. 2915-2919.
- 14. Zverev S.V., Sesikashvili O. Modeling of urease thermal inactivation processes in soybean at high-temperature micronization // Potravinarstvo. 2018, T. 12. V. 1. P. 512-519.

REFERENCES

- 1. Vintovkin A.A., Ladygichev M.G. i dr. Sovremenye gorelochnye ustrojstva (konstrukcii i tekhnicheskie kharakteristiki). Spravochnik. M.: Mashinostroenie-1. 2001 496 s. s il. (in Russian)
- 2. Salaimeh, A.A., Hirasawa, T., Fuchihata, M., Akafuah, N., Saito, K. Thermal and flow structures of a porous burner flame and an array of micro flame burners: Implications to simulate large scale mass fires and fire whirls in laboratory // 10th U.S. National Combustion Meeting. 2017. № 128602 (in English)
- 3. Vasilik N.Y., Arutyunov V.S., Zakharov A.A., Shmelev V.M. Use of matrices made of permeable wire material in infrared burners // Russian Journal of Physical Chemistry B, 2017. V. 11 (6). P. 937-941 (in English)
- 4. Vasilik N.Y., Shmelev V.M., Porsin A.V. Environmental characteristics of infrared burners with a catalytic radiation screen // Russian Journal of Physical Chemistry B, 2019. T. 13. V.1. P. 101-106 (in English)
- 5. Shmelev V.M. Combustion of natural gas at the surface of a high-porosity metal matrix // Russian Journal of Physical Chemistry B, 2010. T. 4. V. 4. P. 593-601 (in English)
- 6. Pat. No. 2559001 Russian Federation, IPC C2 A23N 17/00. Micronizer [Text] / Afanasyev V.A., Meshcheryakov E.B., Kochanov D.S. applicant and patent holder Open Joint-Stock Company All-Russian Scientific Research Institute of the Feed Industry No. 2013120404/13; declared 04/30/2013; publ. 08/10/2015, Bull. Number 22. (in English)
- 7. Masalimov I.Kh., Karimov H.T., Pavlenko V.A. Mathematical model of drying barley grain in infrared heating in vacuum // Innovation in Agriculture, 2019. V. 3(32). P. 95-101 (in English)

- 8. Afanasiev V.A., Ostrikov A.N., Manuilov V.V., Aleksandrov A.I. Development of highly efficient technology of grain moisture-heat treatment and the design of conditioner steamer. Proceedings of the Voronezh State University of Engineering Technologies. 2019;81(1):19-26 (In Russian)
- 9. Rudobashta S., Zueva G. Drying of seeds through oscillating infrared heating // Drying Technology, 2016. T. 34. V. 5. -P. 505-515 (in English)
- 10. Riadh M.H., Ahmad S.A.B., Marhaban M.H., Soh A.C. Infrared heating in food drying: an overview // Drying Technology, 2015. T. 33. V. 3. -P. 322-335 (in English)
- 11. Martynov V.M., Gabitov I.I., Karimov KH.T., Masalimov I.KH., Permyakov V.N., Ganeev I.R., Saitov I., Saitov B. Reasoning barley grain drying modes for vacuum-infrared drying machines //

Journal of Engineering and Applied Sciences. 2018, - T. 13. - V. S11. - P. 8803-8811 (in English)

- 12. Lakhno V., Kasatkin D., Buriachok V., Palekha Y., Saiko V., Domrachev V. It support in decision-making with regard to infra-red grain drying management // Journal of Theoretical and Applied Infor-mation Technology, 2018. T. 96. V 22. P. 7587-7598 (in English)
- 13. Ospanov A.B., Karmanov D.K., Dautkanova D.R., Vasiliev A.N., Budnikov D.A. Changing parameters of the microwave field in the grain layer // Journal of Engineering and Applied Sciences, 2016. T. 11. V. 13. P. 2915-2919 (in English)
- 14. Zverev S.V., Sesikashvili O. Modeling of urease thermal inactivation processes in soybean at high-temperature micronization // Potravinarstvo. 2018, T. 12. V. 1. P. 512-519 (in English)

UDC 637.524.2 IRSTI 65.59.31 https://doi.org/10.48184/2304-568X-2020-4-21-26

EVALUATION OF THE EFFECT OF PLANT MATERIAL ON THE QUALITY OF COOKED SAUSAGES

A. SARSEMBEKOVA¹, M. KORZENIOWSKA², Y. UZAKOV¹, ZH. ZHELEUOVA¹

(¹Almaty Technological University ²Wroclaw University of Environmental and Life Sciences)

E-mail: aigerim.koishybayeva@mail.ru

Various amounts of buckwheat hulls (1%, 1,5%, and 3%) were added to cooked turkey sausages. The effect of buckwheat hulls on the physicochemical characteristics of the cooked turkey sausages, including, pH, instrumental color, texture profile analysis (TPA), antioxidant content and sensory evaluation, were determined. Increased levels of added buckwheat hulls led to higher antioxidant activity. However, the protein and fat contents of the cooked turkey sausage samples were constant. The instrumental color in control sample were $L^*=65,1$, $a^*=5,6$, and $b^*=9,8$. There were slight differences in the TPA among the treated samples. According to the results of the sensory and objective assessment of consumer properties, it can be argued that sample F1 with the introduction of buckwheat hulls 3,0% had a negative effect on sensory properties of cooked turkey sausages. The best marks were given to the sample F1 with the introduction of buckwheat hulls 1,0% on sensory evaluation.

Keywords: cooked turkey sausage, buckwheat hulls, physico-chemical, textural and sensory properties, antioxidant activity.

ӨСІМДІК ШИКІЗАТЫНЫҢ ПІСІРІЛГЕН ШҰЖЫҚҚА ӘСЕРІН ЗЕРТТЕУ

A.Т. $CAPCEMBEKOBA^{1}$, M. $KOPЖЕНИОВСКА^{2}$, Я.М. $УЗАКОВ^{1}$, Ж.С. ЖЕЛЕУОВ A^{1}

(¹Алматы технологиялық университеті, ²Вроцлав жаратылыстану ғылымдары мен қоршаған орта университеті) E-mail: aigerim.koishybayeva@mail.ru

Қарақұмық қауызының әр түрлі мөлшері (1%, 1,5% және 3%) пісірілген күркетауық шұжықтарына қосылды. Қарақұмық қауызының пісірілген күркетауық шұжықтарының физика-химиялық сипаттамаларына, оның ішінде рН, аспаптық түс, құрылымдық профильді