
 

Алматы технологиялық университетінің хабаршысы. 2020. №2. 

 

 

54 

 

IRSTI 44.29.37 

 

AUTO-OSCILLATIONS OF WIRES OF HIGH-VOLTAGE POWER LINES  

(ANCHOR SPAN) 
 

M.A. DJAMANBAYEV1, J.E. KARATAEVA1, Z.A. DZHUMABEKOVA1 

 

(Almaty Technological University, Almaty, Kazakhstan)  

E-mail: dzhamanbaev@mail.ru 

 

Dangerous rapprochement or whipping of wires in flight can be caused by dancing the wires. 

There fore, the distance between the wires and cables should be selected taking into account the 

expected intensities of the dancing wires. The purpose of this article is to determine the possible 

intense dancing of the split phase wires based on the self-oscillatory regime of the icy wires of the split 

phase at the anchor span. Investigations of the self-oscillating process were carried out by the Van 

Der Pol method. The research results can be used in the design of high-voltage power lines, studies of 

the phenomena of dancing and in the development of measures to protect lines from dancing wires. 

 

Keywords: power line, wire dance, self-oscillations, equation of motion, degree of freedom, 

wind speed, dance intensity, stability. 
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Сымдардың қауіпті жақындасуы немесе аралықтағы сымдардың бұралуы олардың би-

леуіне әкеледі. Сондықтан, сымның өзара қашықтығын және де сымдар мен тростар арасын-

дағы қашықтықты, билейтін сымдардың қарқындылығын ескере отырып таңдау керек. Осы 

мақаланың мақсаты – автотербелістік режим негізіндегі тарамдалған фазасымдарының ан-

керлік өткінде мүмкін болатын қарқынды билеуін анықтау болып табылады. Автотер-

белістік процесті зерттеу Ван – Дер - Пол әдісімен жүргізілді. Зерттеу нәтижелері жоғары 

вольтты электр желілерін жобалауда, сымдардың билеу құбылыстарын зерттеуде, және де 

желілерді сымдардың билеуінен қорғауға арналған шараларды жасауда қолдануға болады.  

 

Негізгі сөздер: әуе желілері, мұзды сымдардың билеулері, автотербеліс, математика-

лық модель, еркіндік дәрежесі, жел жылдамдығы, билеу қарқыны, орнықтылық. 
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Опасные сближения или схлестывания проводов в пролете могут быть вызваны пляс-

кой проводов. Поэтому, расстояния между проводами, а также между проводами и тросами 

должны выбираться с учетом предполагаемой интенсивности пляски проводов. Цель нас-

тоящей статьи - на основе автоколебательного режима обледенелых проводов расщеплен-

ной фазы на анкерном пролете определение возможной интенсивной пляски проводов 

расщепленной фазы. Исследования автоколебательного процесса осуществлялись методом 

Ван-Дер-Поля. Результаты исследований могут быть использованы при проектировании 
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высоковольтных линий электропередач, исследований явлений пляски и при разработке 

мероприятий по защите линий от пляски проводов. 
 

Ключевые слова: линия электропередачи, пляска проводов, автоколебания, уравне-

ние движение, степень свободы, скорость ветра, интенсивность пляски, устойчивость. 

 

Introduction 

Dance is one of the most dangerous 

varieties caused by the wind of vibrations of icy 
wires of overhead lines (VL) [1]. When operating 

overhead lines for areas with frequent dancing of 

wires, it is necessary to provide measures to 

prevent overlapping of wires by increasing the 
distance between the wires (wires and cables), 

taking into account possible trajectories of 

movement of wires during dancing. 
A number of works [1–11] have been 

devoted to assessing the possible intensities of 

dancing (the range of oscillations) depending on 
the parameters of the lines and weather 

conditions. These works are based on the 

analysis of long-term observational data on wire 

dancing on active lines and differ in the nature of 
the formulation of research problems and 

methods for solving them. 

According to [2], the maximum range of 

dance 
maxY  is estimated by the formula  

f

V
Y w


26,0

max

 
where 

Vw

 is the wind speed, 
f
is the 

transverse frequency of the wire (Hz). 
According to [7.8], the parameters that 

make it most likely to determine the 

predisposition of the air line to the dance, as well 
as the possible amplitudes of the dance, are the 

parameter M' 

2

3

67,10





f
M

 

where  f is the arrow of the wire sag,  is 

the length of the supporting string of insulators, 

 - is the span. 

According to the methodology, the 

amplitude of the dance is determined on the basis 

of a specially constructed nomogram. This 
technique applies to intermediate spans of 

overhead lines 110 and 220 kV with single wires. 

The work [9] is devoted to assessing the 

maximum range of dancing of single wires and 
the split phase. On the basis of processing 166 

observation data and additional experiments, the 

dependence of the maximum dance swing on the 

diameter and arrow of the wire sag was obtained 

with some restrictions on the span 

( 50030   ) and wind speed (for single 

wires 15V  and for split phases 10V ): 

For single wires 

d

f

d

A pkpk

50

8
ln80



 

For split phases 

d

f

d

A pkpk

500

8
ln170



 

where Аpk-pkis the swing of the dance, d-  is 
the diameter of the wire, f - is the arrow of the 

sag of the wire at 00С. 

Similar works [10, 11] are devoted to 
estimating the maximum intensities of single-

wave dancing based on the processing of long-

term observational data. In these studies, when 

determining the maximum intensity of dancing, 
the main factor is not taken into account - the 

dependence of the intensities on the wind speed. 

Objects and methods of research 
The object of the study is high-voltage 

power lines (power lines). The subject of the 

study is the dance of wires of power lines on the 
anchor span. 

The purpose of this article is based on the 

study of the self-oscillatory regime of the icy 

wires of the split phase (RF) on the anchor span, 
to determine the possible intensities of dancing 

of the wires of the split phase. 

Research of the self-oscillating process is 
carried out by the van der Pol method. 

Results and their discussion 
With moderate winds, as a rule, the dance 

of the RF wires is characterized by insignificant 

(sometimes complete absence) torsional 

movements. For such cases, the mutual influence 
of torsional and linear (transverse) movements of 

the RF during dancing can be neglected and the 

oscillatory process without torsional movements 

can be considered. 
In [12], a mathematical model of the wire 

dance of the RF power lines was obtained. The 

model takes into account two degrees of freedom 
- linear and torsional motion and is designed for 

the case when the points of attachment of the 
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wires to the supports are fixed (anchor span). If 

we exclude in this model the generalized 
coordinate of torsional motions, the initial 

nonlinear system can be approximately reduced 

to a single equation with respect to linear 
displacement 

0)()()()()()( 13

3

4

2

3

23

21  ktaktaktataktakta а              (1) 

where the coefficients of equation (1) are determined by the following expressions: 
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Here )(ta  the generalized coordinate 

of linear displacement,  air density, 

d characteristic profile size, g gravity 

acceleration, V  wind speed,   span, Е – 

elastic modulus, F – wire cross-sectional area, T- 

wire tension, P0- weight of a unit length of wire, 

Pver - weight units of wire length taking into 

account ice,   damping decrement, R  

splitting radius, СL0andСD0 are stationary 

aerodynamic characteristics coefficients. 

According to [13]: 10 DC ; 40 LC ; ;121 LC  

To study the dance of wires of the RFwith 

one degree of freedom, we write the nonlinear 

equation (1) in the normal Cauchy form. 

Introducing the notation ;)( 0уta 
1)( уta  , 

we obtain 

10 уу   

),,( 1010

2

1 tyyfkyу a  
     (2) 

Where 













1

133

0

1

42

0

1

33

1

1

2
110 ),(

k

k
y

k

k
y

k

k
y

k

k
yyyf  

To solve the nonlinear equation, we use 
the approximate Van der Pol method [14]. 

According to the van der Pol method, we will 

seek solutions (3) in the form 

 )()()(0 ttсostАtу а        (3)  

 )(sin)()(1 tttАtу аа   (4)  

Where )(tА  is the average amplitude of 

the dance (unknown function of time), )(t is 

the variable initial phase. 
The average amplitude of the dance 

characterizes the arithmetic mean of the values 

of greater and lesser amplitude 

22
)(

ААА
tA НВ 




                (5) 

where АВ is the large amplitude of the 
dance (moving the wire from static equilibrium 

to the highest position), АН is the smaller 

amplitude of the dance (moving the wire from 
static equilibrium to the lower position), ΣА is 

the intensity of the dance of the wires 

The intensity in the stationary mode of 

dancing is determined by twice the average 
amplitude. 

АtAА 2)(2                 (6) 
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where   ta  

When calculating integrals (7) and (8), 

unknown functions of time and are considered 

constant АtА )( и  )(t . We add the 

calculated values of the integrals to the shortened 

van der Pol equations 











 2

1

2

21
11

4

3
1

2
)( A

k

k
A

k
AFk

dt

dA a   (9) 

24
21

8

3
)( A

k
AFk

dt

d

a


        (10) 

For the solution of (9), we explicitly 

multiply both sides of the equality by А2  
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Make a replacement 

2
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A
z  

dt

dz

zdt

dA
A

2

1
2   

and transform the equation taking into 

account the replacement 

dtk
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
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The solution to the last equation has the 

form (in the final result, the substitution z=1/A2is 

taken into account) 

Сtk
k

k

A

a  1

1

2

2

2 4

31
ln




1

2

2

2 4

31
1

k

k
Ce

A

atk 
  

 
The constant integration of С under the 

initial conditions t=0, A(0)=A0
(A0

is the initial 

deviation) has the value 

1

2

2

2

0 4

31

k

k

А
C a  

Taking into account constant integration, 

solution (9) has the form 

  2
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2

2

0

2

21

2

01

334

4

1 AkeAkk

Ak
A

a

tk

a  
                                            (11) 

As t → ∞, the average amplitude of the 
wire dance tends to a constant value. Below, the 

transformations take into account the condition 

01 k  at
H

kpVV  , where H

kpV  the lower 

critical speed at which the wire dance is excited 
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As follows from the last expression, no 

matter how small (much) the initial deviation А0,  

is, the amplitude of the dance over time will still 
monotonously approach a stationary value 

(independent of the initial deviation). Thus, the 

intensity of dancing in a stationary mode 

according to (6) is determined by the expression 

















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




 


V

V

C
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А

H
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L

LD
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1
2

2
1

00

2

2


                                          (12) 

 
 

Where H

kpV  the lower critical speed at 

which the wire dance is excited is determined by 

the formula 

 002 LD

верaH

kp
CCdg

P
V







          

(13) 

We study the oscillatory process for 

stability at the equilibrium point [14]. The state 
of equilibrium is determined based on the 

condition 0)(1 AF . According to formula (7), 

we have two equilibrium states: 
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01 А  and      
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Define the derived function )(1 AF  
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By supplying 1А  and 2А  the values and 

alternately in the expression (15), we have the 

stability condition 

 0
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From the last expression it follows that the 

equilibrium state А2 is stable only under the 

condition 

  02 004  LDа CCVb

 whence follows the value of the minimum 
wind speed at which the oscillatory process does 

not develop (formula 13) 

 002 LD

верa

CCdg

P
V








 
Below are the comparisons of the 

calculation results performed according to 

formula (12) with the results of theoretical 

calculations at various wind speeds (Figure 1). 
Theoretical data are obtained on the basis of 

modeling a mathematical model in a Mathcad 

environment using the Runge-Kutta method. 
The calculations were performed for wire 

grade ASO - 330/39 with the following 

characteristics: Young's modulus E = 7700 Dan / 

mm2; wire diameter dP = 24 mm; the cross-
sectional area of the wire F = 339.6 mm2; weight 

unit length of wire Rver = 1,132 daN / m. 

Characteristics of the lines: The split phase 
consists of 3 wires (n = 3), the splitting radius is 

R = 0.23 m. In the calculation, the air density is 

taken to be ρ = 0.11 daN * s2 / m4 and the 
attenuation decrement is δ = 0, 12. 

As the comparison results show, the 

calculation formula (12) is applicable in a limited 

range of speeds, the values of which depend on 
the span. So, for ℓ = 200 m, the calculation 

formula is valid at a wind speed not exceeding 

12 m / s, beyond which the character of the 

dependence does not coincide with the 
simulation results. Similarly, for ℓ = 300 m - 8 m 

/ s and for ℓ = 400 m - 7 m / s. Such limitations 

are due to the fact that when deriving the 

calculation formula, the influence of torsional 
movements on the nature of the dance was not 

taken into account. At moderate wind speeds, the 

influence of torsional movements on the nature 
of the dance is negligible and can be neglected to 

some extent. However, this assumption is 

unacceptable at high wind speeds. As the 
simulation results show, at high wind speeds 

there is an abrupt decrease in the intensity of 

dancing (Figure 1) and, on the contrary, an 

abrupt increase in the intensity of torsional 
vibrations, that is, an energy exchange occurs 

between linear and torsional vibrations. 

In general, in the allowed range of wind 
speeds, the discrepancy between the data 

calculated according to formula (12) and the 

theoretical data is insignificant. The maximum 
discrepancy is observed at ℓ = 300 m and V = 8 

m / s, which does not exceed 15%. Thus, the 

calculation formula (12) can be used to assess the 

intensity of wire dancing in a certain range of 
wind speeds. The allowed range of wind speeds 

can be set based on an analysis of the original 

mathematical model of wire dancing (with two 
degrees of freedom). 
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a)         
 

b)          
 

c)          
 

Figure 1. The dependence of the intensity of the dancing wires of the RF on wind speed. 
2/10 ммдаН . A) - м200  B) - м300  C) ) - м400 . 

1 - according to the mathematical model of the wire dance of the R 

 

Conclusion 

1.  A calculation formula has been obtained 
for determining the intensities of one-half-wave 

dancing of RF wires at given wind speeds, 

known power line parameters and aerodynamic 
characteristics of icy wiresF, 2 - according to the 

calculation formula (12). 

2.  The calculation formula is applicable in 

a limited range of wind speeds. The permissible 
speed range can be determined (in the future) 

based on the analysis of the initial mathematical 

model of dancing, taking into account the mutual 
effects of linear and torsional vibrations in the 

process of dancing 

3.  The developed technique allows you to 
determine the sum of the amplitudes (АВ+АН),  

but does not provide information on the ratio of 

amplitudes (АВ/АН), which is its disadvantage. 

4.  The results of the study can be used in 

the design of high-voltage power lines, the study 
of the phenomena of dance and in the 

development of measures to protect overhead 

lines from dancing wires 
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AXISYMMETRIC BEND OF THE LITHOSPHERIC PLATE OF THE EXPONENTIAL 

PROFILE 
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(1Almaty Technological University, Almaty, Kazakhstan) 
E-mail: abayab@mail.ru 

 

Earth 's seismic and volcanic activity is related to plate tectonics. Thin elastic surface plates 

form a lithosphere which experience different loads. The article considers a new model of the stress-

strain state of the axisymmetric lithospheric plate of exponential profile in a non-uniform temperature 

field and under the influence of transverse forces. Novelty of solution of this problem lies in study by 

method of partial sampling of nonlinear differential equation with non-uniform coefficients when the 

lithospheric plate is bent. There are obtained regularities of change of radial force and bending 

moments under action of radial uniformly distributed load and volumetric centrifugal forces, as well 

as a result of temperature heating. A graphic analysis indicates the non-linear nature of their 

distribution, which significantly affects the shape of a curved plate. 
 

Key words: transverse forces, temperature field, lithospheric plate, exponential profile, 

axisymmetric bend. 
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