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AUTO-OSCILLATIONS OF WIRES OF HIGH-VOLTAGE POWER LINES
(ANCHOR SPAN)
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Dangerous rapprochement or whipping of wires in flight can be caused by dancing the wires.
There fore, the distance between the wires and cables should be selected taking into account the
expected intensities of the dancing wires. The purpose of this article is to determine the possible
intense dancing of the split phase wires based on the self-oscillatory regime of the icy wires of the split
phase at the anchor span. Investigations of the self-oscillating process were carried out by the Van
Der Pol method. The research results can be used in the design of high-voltage power lines, studies of
the phenomena of dancing and in the development of measures to protect lines from dancing wires.

Keywords: power line, wire dance, self-oscillations, equation of motion, degree of freedom,
wind speed, dance intensity, stability.
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Coimoapoviy Kayinmi JHcaKblHOACYbl Hemece apaiblKmazol CbIMOApOblH OYpasiyvl 0aapoviH Ou-
neyine axeneoi. COHObIKmMAH, COIMHbBIY 03apPA KAUILIKIMBIZLIH HCIHE Oe CbIMOap MeH mpocmap apacoit-
0azbl KAUWIbIKMbIKHbL, OUleilmin coIMOapOoblH, KAPKbIHObLIbIZbIH eCKepe Omblpbin manoay Kepex. Ocwol
MAKAIAHBIH MAKCAMbL — A8MOMEPDENiCMIK pexcum Hezi3inoezi mapamoanzan hazacvlmoapvivly aH-
Kepiik emKinde MYMKiH OonambliH KApKblHObL Ouieyin anvlkmay 0oavin maowviiadsl. Aemomep-
benicmix npoyecmi 3epmmey Ban — Jlep - Ilon adicimen scypzi3indi. 3epmmey nomuosicenepi yxozapul
60/1bMMbL IIEKMP HCENNEPIn Hcodanayoa, colmoapobly ouney KyooliblCIapbln 3epmmeyoe, HeaHe oe
Jceninepoi coimMoaposvlH, OuneyineH Kopzayza apHaizan wapanapobl Heacayod Ko0aHy2a 601aosl.

Herizri ce3zugep: aye xesijiepi, My3abl cbIMIApPAbIH OuJieyJiepi, aBToTepdeic, MaTeMaTUKA-
JIBIK MOJeJib, ePKIHAIK JopeKeci, kel KbLIIaMIbIFbI, 01Jiey KAPKbIHbI, OPHBIKTHUIBIK,.
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Onacuole conudicenus uiu CXaecmvléanus NPOBOO0E 6 NPoieme MoZym OblMb 6bI36AHbLL NIAC-
Koll np060006. Iloamomy, paccmoanus mexcoy npoeooamu, a MaKice Mexicoy npoeooamu u mpocamu
OO0JIIICHBL BLIOUPAMBCA C YUCHOM RPEONOIAZAeMOll UHMEHCUBHOCMU RAACKU np0o6000e. Ilenv nac-
mosweil cmamou - HaA 0CHOBE AGMOKONEOAMENIbHO20 PeXcuUMa 001e0enenblx nPooo00e pacujeniien-
HOUl hazvl HaA GHKEPHOM npoOieme OnpeodesieHue G03MONCHOU UHMEHCUGHOIU NIACKU HPOBO00S
pacwiennennoit asvl. Hecnedoeanua asmoxoiedamenvnozo npoyecca OCywiecmensnuc, Memooom
Ban-/lep-Ilona. Pe3ynbmamsl uccie008anuii mo2ym 0Ovlmb UCHONb308AHbI HPU NPOEKMUPOBAHUU
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6bICOKOBOBIMHBIX JIUHUIL INEKMPOnEpeoay, UCC1e008anHull AIEeHUll NAACKU U HpU paspadome
MEPOnpUAmMUIL nO 3aujume JTUHUI OM RAACKU HPOBOO0E.

KiioueBble ciioBa: JIHHHS JJEKTponepeaaiu, IJjiaisiCka 1nmpoBoaos, ﬂBTOKOJ186aHI/Iﬂ, YpaBHE-
HHUE IBHKCHHE, CTCIICHDb CBOﬁO}]bI, CKOpPOCTH B€TPpa, HHTCHCUBHOCTD IVISACKH, yCTOﬁqHBOCTL.

Introduction

Dance is one of the most dangerous
varieties caused by the wind of vibrations of icy
wires of overhead lines (VL) [1]. When operating
overhead lines for areas with frequent dancing of
wires, it is necessary to provide measures to
prevent overlapping of wires by increasing the
distance between the wires (wires and cables),
taking into account possible trajectories of
movement of wires during dancing.

A number of works [1-11] have been
devoted to assessing the possible intensities of
dancing (the range of oscillations) depending on
the parameters of the lines and weather
conditions. These works are based on the
analysis of long-term observational data on wire
dancing on active lines and differ in the nature of
the formulation of research problems and
methods for solving them.

According to [2], the maximum range of

dance Y, is estimated by the formula

Y :0,26-VW
f
where V. is the wind speed, fis the

transverse frequency of the wire (Hz).

According to [7.8], the parameters that
make it most likely to determine the
predisposition of the air line to the dance, as well
as the possible amplitudes of the dance, are the
parameter M’

f 3
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M’ =10,67

where f is the arrow of the wire sag, ir is
the length of the supporting string of insulators,

£ - is the span.

According to the methodology, the
amplitude of the dance is determined on the basis
of a specially constructed nomogram. This
technique applies to intermediate spans of
overhead lines 110 and 220 kV with single wires.

The work [9] is devoted to assessing the
maximum range of dancing of single wires and
the split phase. On the basis of processing 166
observation data and additional experiments, the
dependence of the maximum dance swing on the
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diameter and arrow of the wire sag was obtained
with  some  restrictions on the span
(30<¢<500) and wind speed (for single
wires V <15 and for split phases V <10):

For single wires

A _ 80In 8f
d 50d
For split phases
A
Bocne 17010 BT
d 500d

where Ap-piis the swing of the dance, d- is
the diameter of the wire, f - is the arrow of the
sag of the wire at 0°C.

Similar works [10, 11] are devoted to
estimating the maximum intensities of single-
wave dancing based on the processing of long-
term observational data. In these studies, when
determining the maximum intensity of dancing,
the main factor is not taken into account - the
dependence of the intensities on the wind speed.

Objects and methods of research

The object of the study is high-voltage
power lines (power lines). The subject of the
study is the dance of wires of power lines on the
anchor span.

The purpose of this article is based on the
study of the self-oscillatory regime of the icy
wires of the split phase (RF) on the anchor span,
to determine the possible intensities of dancing
of the wires of the split phase.

Research of the self-oscillating process is
carried out by the van der Pol method.

Results and their discussion

With moderate winds, as a rule, the dance
of the RF wires is characterized by insignificant
(sometimes  complete  absence) torsional
movements. For such cases, the mutual influence
of torsional and linear (transverse) movements of
the RF during dancing can be neglected and the
oscillatory process without torsional movements
can be considered.

In [12], a mathematical model of the wire
dance of the RF power lines was obtained. The
model takes into account two degrees of freedom
- linear and torsional motion and is designed for
the case when the points of attachment of the
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wires to the supports are fixed (anchor span). If nonlinear system can be approximately reduced
we exclude in this model the generalized to a single equation with respect to linear
coordinate of torsional motions, the initial displacement

A(t) + kat) + k,a’ () + o, a(t) + ka’(t) + k,a’(t) + k=0 O
where the coefficients of equation (1) are determined by the following expressions:

P _llpo;gozmncDO;gzgovz;b _ gEF b2 gEF b _gml'[ ' b _4b

eep ~ 1= 2 — R ,4°'M3—
g sep Tg F)scpg Peep
b d 2 EFP_2¢? ow, b,(C,,+C
b5 2 @l = z°gT azep3 Kk, = _ 4( DO LO)V;kzzb_4CL1;
R ZPMPZ 27T T 2 3V

' 2 4T 3

eep
aerodynamic characteristics coefficients.

4 8EFP %/
ks =37b;; k, :ﬂsz. 5 =0EC VY @ =Z o7 [14— op J

Here a(t) — the generalized coordinate

of linear displacement, p —air density, According to [13]:Cp,, =1; C ; =4; C, =12,
d,, —characteristic profile size, 0§ — gravity To study the dance of wires of the RFwith
) ] / one degree of freedom, we write the nonlinear
acceleration, V- wind speed, £ — span, E — equation (1) in the normal Cauchy form.
elastic modulus, F — wire cross-sectional area, T- ; . — 1 A
; : T ; ' Introd the notation a(t) = y,; a(t) =y, ,
wire tension, Po- weight of a unit length of wire, o U(?mg e notation a(t) =y ; a() N
Pver - weight units of wire length taking into we obtain
account ice, O — damping decrement, R — Yo=n
o ) ’ i )
splitting radius, ClandCpo are stationary ¥, = -2y, +k1f(y0’ yl’t) 2
Where
k k k k
2,3 3 2 4,3 13
FYor V)= VitV + Yo+ Yo+~
k1 kl kl k1
To solve the nonlinear equation, we use A+ 4, ZA
the approximate Van der Pol method [14]. A(t) = 2 ~ o ®)

According to the van der Pol method, we will where A is the large amplitude of the

seek solutions (3) in the form dance (moving the wire from static equilibrium
v () = A(t)cos[a)at +l//(t)] ©) to the highest position), Ay is the smaller

_ . amplitude of the dance (moving the wire from
1 () =—w,AM)sin[o,t+y (t)] @) static equilibrium to the lower position), X4 is

Where A(t) is the average amplitude of the intensity of the dance of the wires
The intensity in the stationary mode of
the dance (unknown function of time), ¥ (t) is dancing is determined by twice the average
the variable initial phase. amplitude.
The average amplitude of the dance X4=2A(t)=24 (6)

characterizes the arithmetic mean of the values
of greater and lesser amplitude

2z 2
F(A) = S f f (Yo, y1)sin fdg = —EA(1+ K2, Azj (7)
2rw, % 2

4k1

Fz(A) =

y,)cos Bdf = —4— k A?
1a)a (8)
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where 8 = @,t +y Make A ?L . replacement
When calculating integrals (7) and (8), z= 12 = 2A—=-5— z
A dt 2% dt

unknown functions of time and are considered . L
and transform the equation taking into

constant A(t) = Auy(t) =w. We add the account the replacement
calculated values of the integrals to the shortened 3K
van der Pol equations dl z 4+ 2e%a
4k,
k,dt

3k, w? _
— =k F(A __ﬁ +27a A2 (g —=
kR (A) m ] 9) Z+3k2wa
d 3k 4k,
=¥ _ k,F,(A)=—2 (10) The solution to the last equation has the
dt 8w, form (in the final result, the substitution z=1/A%is
For the solution of (9), we explicitly taken into account)
multiply both sides of the equality by 2A4
2a9A -y a7 143K ET
dt 4k,
1 3k R 2
In|— —+ kt C:>i_c klt_M
A* 4k, A? 4k,
The constant integration of ~ under the Taking into account constant integration,
initial conditions =g, A(0)=Ac(A,is the initial solution (9) has the form
deviation) has the value
1 3k,
=4 ——
A 4k,
4k, A
A=+ 2 21 Kt 2 p2 (11)
(4K, +3k,0? AZ B — 3K, 02 A’

_ As t — oo, the average amplitude of the k <0 atV >Vk , WhererH — the lower
wire dance tends to a constant value. Below, the P e ) )
transformations take into account the condition critical speed at which the wire dance is excited

2 H
- 4k A |V (CootCu [ Vi
e\ (4K, +3k,02 A2 B -3k, A2 | @ | Cy Vv
As follows from the last expression, no (independent of the initial deviation). Thus, the
matter how small (much) the initial deviation Ao, intensity of dancing in a stationary mode
is, the amplitude of the dance over time will still according to (6) is determined by the expression
monotonously approach a stationary value
2 H
sa=2 |2 [Coo+Cu |1 Ve (12)
a): Cu \%

We study the oscillatory process for
stability at the equilibrium point [14]. The state
of equilibrium is determined based on the

Seo. P condition F,(A)=0. According to formula (7),
H _ a_6ep we have two equilibrium states:

vH =
© ngﬂ (CDO + CLO) (13)

Wherer'; — the lower critical speed at

which the wire dance is excited is determined by
the formula

57



AJMAaThI TeXHOJOTUSIJIBIK YHUBepcuTeTiHiH xabapmbicsl. 2020. Ne2,

4=0 e 4= [ (3200 UCo )] 9

3K, @, 270,Cyy
Define the derived function F, (A) By supplying 4, and A, the values and
dE (A 1 K. o alternately in the expression (15), we have the

é,(o\ ) - _E(H ﬁa’a AZJ (15) stability condition
] dR(A) _ 1 g (equilibrium steady)

dA [, 2
dF (A) _ I 870,C,, +Lkza)a2\/ [25a)a -,V (Coo +Cpo )]
dA |.,  1670,C,, k,

From the last expression it follows that the
equilibrium state 4. is stable only under the
condition

26w, — 7,V (Cpy +C )= 0
whence follows the value of the minimum

wind speed at which the oscillatory process does
not develop (formula 13)

oaw.P

a eep

V <
ngdl'[(CDO + CLO)

Below are the comparisons of the
calculation results performed according to
formula (12) with the results of theoretical
calculations at various wind speeds (Figure 1).
Theoretical data are obtained on the basis of
modeling a mathematical model in a Mathcad
environment using the Runge-Kutta method.

The calculations were performed for wire
grade ASO - 330/39 with the following
characteristics: Young's modulus E = 7700 Dan /
mm2; wire diameter dP = 24 mm; the cross-
sectional area of the wire F = 339.6 mm2; weight
unit length of wire Rver = 1,132 daN / m.
Characteristics of the lines: The split phase
consists of 3 wires (n = 3), the splitting radius is
R = 0.23 m. In the calculation, the air density is
taken to be p = 0.11 daN * s2 / m4 and the
attenuation decrement is 6 = 0, 12.

As the comparison results show, the
calculation formula (12) is applicable in a limited
range of speeds, the values of which depend on
the span. So, for £ = 200 m, the calculation
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formula is valid at a wind speed not exceeding
12 m / s, beyond which the character of the
dependence does not coincide with the
simulation results. Similarly, for £ =300 m - 8 m
/s and for £ = 400 m - 7 m/ s. Such limitations
are due to the fact that when deriving the
calculation formula, the influence of torsional
movements on the nature of the dance was not
taken into account. At moderate wind speeds, the
influence of torsional movements on the nature
of the dance is negligible and can be neglected to
some extent. However, this assumption is
unacceptable at high wind speeds. As the
simulation results show, at high wind speeds
there is an abrupt decrease in the intensity of
dancing (Figure 1) and, on the contrary, an
abrupt increase in the intensity of torsional
vibrations, that is, an energy exchange occurs
between linear and torsional vibrations.

In general, in the allowed range of wind
speeds, the discrepancy between the data
calculated according to formula (12) and the
theoretical data is insignificant. The maximum
discrepancy is observed at £ =300 m and V =8
m / s, which does not exceed 15%. Thus, the
calculation formula (12) can be used to assess the
intensity of wire dancing in a certain range of
wind speeds. The allowed range of wind speeds
can be set based on an analysis of the original
mathematical model of wire dancing (with two
degrees of freedom).
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Figure 1. The dependence of the intensity of the dancing wires of the RF on wind speed.
o =10 0aH | mm®. A)- £ =200 m B)- /=300 m C))- £ =400 m.
1 - according to the mathematical model of the wire dance of the R

Conclusion

1. A calculation formula has been obtained
for determining the intensities of one-half-wave
dancing of RF wires at given wind speeds,
known power line parameters and aerodynamic
characteristics of icy wiresF, 2 - according to the
calculation formula (12).

2. The calculation formula is applicable in
a limited range of wind speeds. The permissible
speed range can be determined (in the future)
based on the analysis of the initial mathematical
model of dancing, taking into account the mutual
effects of linear and torsional vibrations in the
process of dancing

3. The developed technique allows you to
determine the sum of the amplitudes (A4z+An),
but does not provide information on the ratio of
amplitudes (45/4x), which is its disadvantage.
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4. The results of the study can be used in
the design of high-voltage power lines, the study
of the phenomena of dance and in the
development of measures to protect overhead
lines from dancing wires
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AXISYMMETRIC BEND OF THE LITHOSPHERIC PLATE OF THE EXPONENTIAL
PROFILE

A.A. BAIMUKHAMETOV?, A A. KULTASOVY, P.B. ABDIMANAPOVA!, ZH.B. MAZHIT?

(*Almaty Technological University, Almaty, Kazakhstan)
E-mail: abayab@mail.ru

Earth 's seismic and volcanic activity is related to plate tectonics. Thin elastic surface plates
form a lithosphere which experience different loads. The article considers a new model of the stress-
strain state of the axisymmetric lithospheric plate of exponential profile in a non-uniform temperature
field and under the influence of transverse forces. Novelty of solution of this problem lies in study by
method of partial sampling of nonlinear differential equation with non-uniform coefficients when the
lithospheric plate is bent. There are obtained regularities of change of radial force and bending
moments under action of radial uniformly distributed load and volumetric centrifugal forces, as well
as a result of temperature heating. A graphic analysis indicates the non-linear nature of their
distribution, which significantly affects the shape of a curved plate.

Key words: transverse forces, temperature field, lithospheric plate, exponential profile,

axisymmetric bend.
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