УДК 65.33.29 МРНТИ 664.7.014/.019

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ПРОЦЕСС ПРОРАЩИВАНИЯ ТРИТИКАЛЕ

V. Ч. ЧОМАНОВ 1 , Г.Е. ЖУМАЛИЕВА 1 , Г.С. АКТОКАЛОВА 1 , М. ЖОНЫСОВА 1 , Р.К. КАСИМБЕК 1 , А.К. ТУЛТАБАЕВА 1

(¹TOO «Казахский научно-исследовательский институт пищевой и перерабатывающей промышленности», Казахстан, Алматы)

E-mail: guljan_7171@mail.ru

Рассмотрено влияние температуры на процесс проращивания тритикале. Проращивали тритикале сорта «Таза» в лабораторных условиях в приборе для проращивания зерновых культур. Отмечено, что для активации ферментов тритикале, зерна выдерживали в воде при температуре 40, 50, 60 и 70^{0} C при продолжительности времени 0,5; 1,0 и 1,5 мин. Выявлено, что наибольшее количество белка (9,98%) содержится при 40^{0} C с временной выдержкой в 0,5 мин, что и является основным показателем его белково-протеиназного комплекса. Наибольшее содержание белка в муке благотворно влияет на силу муки и на устойчивость реологических свойств теста из нее.

Ключевые слова: зерновые культуры, температура, проращивание тритикале, ферментация, белок.

ТЕМПЕРАТУРАНЫҢ ТРИТИКАЛДЫ ӨСІРУ ПРОЦЕСІНЕ ӘСЕРІ

 $V. Y. \ Y. MAHOB^{I}, \ \Gamma. E. \ ЖУМАЛИЕВА^{I}, \ \Gamma. C. \ AKTOKAЛОВА^{I}, \ M. \ ЖОНЫСОВА^{I}, \ P.K. \ KACИМБЕК^{I}, \ A.K. \ TУЛТАБАЕВА^{I}$

(«Қазақ қайта өңдеу және тамақ өнеркәсібінің ғылыми-зерттеу институты» ЖШС, Қазақстан, Алматы)

E-mail: guljan_7171@mail.ru

Температураның тритикалды өсіру процесіне әсері қарастырылады. Зертханалық жағдайда дәнді дақылдарды өсіруге арналған құрылғыда «Таза» тритикалық сорты өсіріледі. Тритикалдағы ферменттерді активтендіру үшін дәндерді суда 40,50,60 және 70°С температурасында, ұзақтығы 0,5; 1,0 және 1,5 мин. уақытта ұстайды. Ақуыздың ең көп мөлшері (9,98%) судың 40°С температурасында және 0,5 мин. уақытта ұсталғаны анықталды, бұл оның ақуыз-протеиназалық кешенінің негізгі көрсеткіштері. Ұнның ең жоғары ақуыздық құрамы ұнды күштеуге және қамырдың реологиялық қасиеттерінің тұрақтылығына әсер етеді.

Негізгі сөздер: дәнді дақылдар, температура, тритикалені өсіру, ферментация, ақуыз.

INFLUENCE OF TEMPERATURE ON THE PROCESS OF TRITICALE

 $U.CH.\ CHOMANOV^{l},\ G.E.\ ZHUMALYEVA^{l},\ G.S.\ AKTOCALOVA^{l},\ M.U.\ ZHONYSSOVA^{l},\ R.K.\ KASSIMBEK^{l},\ A.K.\ TULTABAYEVA^{l}$

(Kazakh research institute of processing and food industry, Kazakstan, Almaty) E-mail: guljan_7171@mail.ru

Considered mhe effect of temperature on the triticale germination process. Germinated mriticale varieties "Taza" in the laboratory in a device for germination of cereal crops. It was noted that for the activation of triticale enzymes, the grains were kept in water at a temperature of 40.50.60 and 70 °C for a duration of 0.5; 1.0 and 1.5 min. It was revealed that the greatest amount of protein (9.98%) is contained at 400°C with a time delay of 0.5 min, which is the main index of its protein-proteinase complex. The

highest protein content in flour beneficially affects the strength of the flour and the stability of the rheological properties of the dough from it.

Keywords: Cereals, temperature, triticale germination, fermentation, protein.

Введение

В настоящее время одним из прогрессивных направлений в развитии продуктов функционального питания является создание обогащенных экструдированных продуктов из зернового сырья, так как экструзия является высокоэффективным, безотходным, кратковременным технологически процессом, позволяющим получать продукты, не требующие дополнительной кулинарной обработки, а зерновое сырье является ценным продуктом [1].

Зерновое сырье способствует снижению риска возникновения СХУ, поэтому его целесообразно использовать для производства продуктов функционального питания.

Проблему создания продуктов функционального питания для населения в определённой форме можно решить с помощью экструзионной обработки. Причем, использование теплой экструзии является технологичным и экономически выгодным [1].

Для получения продукта высокого качества следует проводить предварительный подбор сырья. Актуальным представляется исследование возможности применения тритикале в качестве зернового сырья для экструдированных продуктов.

Целью настоящей работы явилось проращивание тритикале и исследование влияния температуры на процесс проращивания тритикале.

Объекты и методы исследований

В качестве объектов исследования использовали тритикале сорта «Таза».

При выполнении работы использовали стандартные, общепринятые органолептические, физико-химические методы исследований.

Для оценки качества исходного сырья использовали стандартные методы определения органолептических, физико-химических показателей качества.

Показатели качества тритикале определяли в соответствии с методиками, изложенными в следующих нормативных документах:

- определение цвета, вкуса и хруста по ГОСТ 27558-87:
- определение массовой доли влаги тритикале по ГОСТ 9404-88;

- определение зольности тритикале на аппарате Инфраскан;
- определение количества и качества сырой клейковины на аппарате Инфраскан;
- определение содержания белка на аппарате Инфраскан;
- определение кислотности тритикале по ГОСТ 27493-87;

Результаты и их обсуждение

При проращивании зерен исследовали влияние различных температур и времени выдерживания при погружении в воде на характеристики прорастающего зерна тритикале. Свойства зерновой массы оценивали по количеству проросших зерен (%) и длине ростков.

Проращивали тритикале сорта «Таза» в лабораторных условиях в приборе для проращивания зерновых культур. Для активации ферментов тритикале, зерна выдерживали в воде при температуре 40, 50, 60 и 70 С при продолжительности времени 0,5; 1,0 и 1,5 мин и далее помещали на прибор для проращивания зерновых культур, где происходит опрыскивание водой и обдувание воздухом.

Поскольку ферменты являются биохимическими катализаторами, состоящими в основном из белка, они чувствительны к воздействию температур. Температура – один из важнейших факторов внешней среды, который независимо от состояния равновесия реакции меняет её скорость. В среднем до 50°С каталитическая активность растет, в то же время постепенно возрастает количество инактивированного фермента за счет денатурации его белковой части. При температуре выше 50°C денатурация ферментного белка резко усиливается и активность фермента падает. Более высокая температура приводит к быстрой деградации фермента, с последующим необратимым спадом активности. В качестве контроля служило зерно, пророщенное без погружения в воде, обеззараженное раствором марганца зерно ополаскивали водой и помещали в прибор для проращивания. Показатели при проращивании зерен тритикале в различных температурах и продолжительности времени выдерживания в воде приведены в таблицах 1-4.

Таблица 1 - Контроль (при 40^{0} С, без погружения в воде)

Проращивание, час	Показатели													
	влажность, %	кислотность,	температура,	длина ростков,	количество всхожих	содержание белка,								
		град	⁰ C	MM	зерен, %	%								
ч/з 24	43	1,8	16	4	50									
36	44	2,0	16	8	70									
48	44	2,2	16	10	95									
после высушивания														
ч/з 48	13,24	3,6	4	10		9,88								

Таблица 2 - Влияние температуры (40^{0}C) и продолжительности времени при выдерживании зерен для активации их ферментативной активности

Проращи																				
вание, час			40^{0} C (0,5 мин)					40^{0} C (1 мин)			40^{0} С (1,5 мин)							
	Влаж Кислот Темпе Дли Коли Содер							Кис	Темп	Дли	Коли	Co	Влаж	Кис	Тем	Дли	Коли	Содержа		
	ность	ность,	ратура,	на	чество	жание	ность	ЛОТ	ерату	на	честв	дер	ность	ЛОТ	пера	на	честв	ние		
	, %	град	^{0}C	рост	всхожих	белка,	, %	ность	pa, ⁰ C	рост	o	жа	, %	но	тура,	ростк	0	белка, %		
				ков,	зерен, %	%		, град		ков,	всхо	ние		сть,	°C	OB,	всхо			
				MM						MM	жих	белка		град		MM	жих			
											зерен	, %					зерен			
											, %						, %			
ч/з 24	46	1,6	16	4	50		47	1,6	16	3	40		47	1,6	16	3	40			
36	48	2,0	16	8	70		48	2,0	16	8	70		48	2,0	16	7	70			
48	48	2,0	16	10	95		49	2,2	16	9	90		49	2,2	16	9	90			
	•	•	•	•			ПС	сле выс	ушивани	Я	•			•		•	•			
ч/з 48	13,34	3,2	40			9,98	13,06	3,2	40			9,28	13,9	3,2	40			7,98		

Таблица 3 - Влияние температуры (50°C) и продолжительности времени при выдерживании зерен для активации их ферментативной активности

Прора-	50 ⁰ С (0,5 мин)								50°C	(1 мин)		50 ⁰ С (1,5 мин)						
ние, час																		
140	Вла	Кис	Тем	Длина	Коли	Содер	Влаж	Кислот	Тем-	Длина	Коли	Co	Влаж	Кис	Тем	Длина	Коли	Co
	жно	лотнос	пера	рост	честв	жание	ность	ность,	пера-	ростков,	честв	дер	нос	лот	пера	рост	чество	дер
	сть,	ть,	тура,	ков,	o	белка, %	, %	град	тура, ⁰ С	MM	o	жа	ть, %	ность	тура, ⁰ С	ков,	всхо	жа-
	%	град	^{0}C	MM	всхо				°C		всхо	ние		, град	°C	MM	жих	ние
					жих						жих	белка					зерен,	белка
					зерен						зерен	, %					%	, %
					, %						, %							
ч/з 24	46	1,6	16	2	40		47	1,6	16	3	40		48	1,6	16	3	40	
36	47	2,0	16	7	50		48	2,0	16	8	50		48	2,0	16	8	40	
48	48	2,2	16	9	90		49	2,2	16	9	80		49	2,2	16	9	80	
	•	•	•	•			•	После	высуши	вания		•	•	•				
ч/з 48	13,5 2	3,0	40	-		9,33	14,0	3,0	40			8,84	13,89	3,2	40	-		9,59

Таблица 4 – Влияние температуры (60^{0} С) и продолжительности времени при выдерживании зерен для активации их ферментативной активности

Прора щивание, час					60°C	(1 мин)			60 ⁰ С (1,5 мин)									
	Влаж	Кислот	Темпер	Длина	Коли	Содержа	Вла	Кислот	Тем	Дли	Коли	Co	Влаж	Кис	Тем	Длина	Коли	Содер
	ность	ность,	атура,	ростков,	честв	ние белка,	жно	ность,	пе	на	честв	дер	ность	ЛОТ	пе	ростко	чество	жание
	,%	град	°C	MM	o	%	сть,	град	pa	рост	o	жа	, %	ность	pa	B, MM	всхо	белка,
					всхо		%		тур	ков,	всхо	ние		, град	тур		жих	%
					жих				a,	MM	жих	белка			a,		зерен,	
					зерен				°C		зерен	, %			°C		%	
					, %						, %							
ч/з 24	47	1,8	16	1	20		48	2,0	16	0	0		48	2,0	16	0	0	
36	48	2,2	16	5	30		48	2,4	16	1	5		48	2,4	16	0	0	
48	49	2,4	16	8	20		49	2,6	16	7	8		49	2,6	16	5	6	
					•		пос	ле высуши	вания	•	•		•		•			
ч/з 48	13,61	3,4	40	-		9,73	14,3	3,8	40			7,95	13,86	3,8	40	-		9,68
							9											

Данные исследований таблицы 2 свидетельствуют, что у контрольного варианта, при температуре 40°С без погружения в воде, длина ростков достигает 4-10 мм, в течении 24-48 часов. Содержание белка составляло 9,88% при температуре 40°С с погружением 0,5 мин. Также, при температуре 40°С и при продолжительности времени до 1,5 минуты выдерживании зерен в воде длина ростков достигала от 3 до 10 мм в высоту.

Далее для активации ферментов тритикале, зерна выдерживали в воде при температуре 50, 60 и 70^{0} С при продолжительности времени 0.5; 1.0 и 1.5 мин и далее помещали на прибор для проращивания зерновых культур, где происходит опрыскивание водой и обдувание воздухом.

Заключение

Данные исследований свидетельствуют, что у контрольного варианта, при температуре 40°С без погружения в воде, длина ростков достигает 4-10 мм, в течении 24-48 часов. Содержание белка составляло 9,88%. Также, при температуре 40°C и при продолжительности времени до 1,5 минуты выдерживания зерен в воде длина ростков достигала от 3 до 10 мм в высоту. При повышении температуры воды до 50°С значительно замедляется и ухудшается прорастание ростков зерен, достигая высотой 2-9 мм. Соответственно, при температуре 60°C. ростки появляются реже и длина ростков составляла от 1 до 8 мм в течении 24-48 часов, а при такой же температуре воды с погружением в 1,5 минуты в течении 36 часов ростки не появлялись, и только спустя 48 часов длина ростков достигла 5 мм, появился кисловатый запах. Следовательно, при выдерживании 70°C в воде, ростки в зернах вовсе не появляются.

По результатам данных таблиц выявлено, что наибольшее количество белка (9,98%) содержится при 40° С с временной выдержкой в 0,5 мин, что и является основным показателем его белково-протеиназного комплекса. Наибольшее содержание белка в муке благотворно влияет на силу муки и на устойчивость реоло-

гических свойств теста из нее. Активация протеолитических и амилолитических ферментов происходит с увеличением степени влагосодержания в пророщенных зернах. Данные таблицы показывают, что оптимальным вариантом исследования является зерновая масса тритикале, пророщенная при погружении в воде температурой 40° C при выдержке 0,5 мин, с продолжительностью проращивания до 48 часов, в результате которого длина ростков достигает 9-10 мм. Динамика повышения влажности и кислотности также наблюдается при проращивании тритикале. Вода при проращивании проникает в зерно в основном через микрокапиллярные отверстия, расположенные в местах зародыша. Часть ее попадает внутрь зерна и через оболочку по всей поверхности, с увеличением времени прорашивания зерна, следовательно, и повышается влагосодержание зерна (46-49%). Процесс влагопоглощения зерном способствует и увеличению кислотности пророщенных зерен, так как в нем наряду с β- амилазой содержится и активная α-амилаза. При совместном лействии этих амилаз, в основном α-амилазы на крахмал обеспечивает осахаривание его, что и обусловливает в нем активность собственных гидролитических ферментов и накоплению кислотности (1,6-2,6 град).

Таким образом, рассмотрено влияние температуры на проращивание тритикале, при котором выявлено, что наибольшее количество белка содержится при 40^{0} C с временной выдержкой в 0,5 мин, что и является основным показателям его белково-протеиназного комплекса.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бакуменко О.Е. Разработка технологии продуктов функционального питания на зерновой основе для учащейся молодежи: дис. ... канд. техн. наук. Москва, 2004. 237 с.
- 2. Рудась П. Г. Использование экструзии для получения продукта с заданными свойствами // Продукты питания и рациональное использование сырьевых ресурсов. Кемерово :Кемер. технол. интищ. пром. 2007. Вып. 12. С. 112-114.